Références
Abrahamsson, T. R., Jakobsson, H. E., Andersson, A. F., Björkstén, B., Engstrand, L., & Jenmalm, M. C. (2012). Low diversity of the gut microbiota in infants with atopic eczema. Journal of Allergy and Clinical Immunology, 129(2), 434–440.
Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 44(2), 139–160.
Aitchison, J. (1986). The statistical analysis of compositional data. Monographs on statistics and applied probability (reprinted in 2003).
Albarède, F. (1996). Introduction to geochemical modeling. Cambridge University Press.
Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z. J., … others. (2020). A unified catalog of 204,938 reference genomes from the human gut microbiome. Nature Biotechnology, 1–10.
Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Nature Precedings, 1–1.
Araya, J. P., González, M., Cardinale, M., Schnell, S., & Stoll, A. (2020). Microbiome dynamics associated with the atacama flowering desert. Frontiers in Microbiology, 10, 3160.
Aronson, H. S., Zellmer, A. J., & Goffredi, S. K. (2017). The specific and exclusive microbiome of the deep-sea bone-eating snail, rubyspira osteovora. FEMS Microbiology Ecology, 93(3), fiw250.
Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., … others. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174–180.
Bastide, P., Ané, C., Robin, S., & Mariadassou, M. (2018). Inference of adaptive shifts for multivariate correlated traits. Systematic Biology, 67(4), 662–680.
Bastide, P., Mariadassou, M., & Robin, S. (2017). Detection of adaptive shifts on phylogenies by using shifted stochastic processes on a tree. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4), 1067–1093.
Baudry, J.-P., Maugis, C., & Michel, B. (2012). Slope heuristics: Overview and implementation. Statistics and Computing, 22(2), 455–470.
Bedarf, J. R., Hildebrand, F., Coelho, L. P., Sunagawa, S., Bahram, M., Goeser, F., … Wüllner, U. (2017). Functional implications of microbial and viral gut metagenome changes in early stage l-dopa-naïve parkinson’s disease patients. Genome Medicine, 9(1), 1–13.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300.
Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 1165–1188.
Benoit, G., Peterlongo, P., Mariadassou, M., Drezen, E., Schbath, S., Lavenier, D., & Lemaitre, C. (2016). Multiple comparative metagenomics using multiset k-mer counting. PeerJ Computer Science, 2, e94.
Bichat, A., Plassais, J., Ambroise, C., & Mariadassou, M. (2020). Incorporating phylogenetic information in microbiome differential abundance studies has no effect on detection power and fdr control. Frontiers in Microbiology, 11, 649. http://doi.org/10.3389/fmicb.2020.00649
Billera, L. J., Holmes, S. P., & Vogtmann, K. (2001). Geometry of the space of phylogenetic trees. Advances in Applied Mathematics, 27(4), 733–767.
Blander, J. M., Longman, R. S., Iliev, I. D., Sonnenberg, G. F., & Artis, D. (2017). Regulation of inflammation by microbiota interactions with the host. Nature Immunology, 18(8), 851–860.
Bokulich, N. A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., … others. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine, 8(343), 343ra82–343ra82.
Brady, A., & Salzberg, S. L. (2009). Phymm and phymmbl: Metagenomic phylogenetic classification with interpolated markov models. Nature Methods, 6(9), 673–676.
Brito, I. L., Yilmaz, S., Huang, K., Xu, L., Jupiter, S. D., Jenkins, A. P., … others. (2016). Mobile genes in the human microbiome are structured from global to individual scales. Nature, 535(7612), 435–439.
Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal, 11(12), 2639–2643.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from illumina amplicon data. Nature Methods, 13(7), 581.
Canani, R. B., Di Costanzo, M., Leone, L., Pedata, M., Meli, R., & Calignano, A. (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology: WJG, 17(12), 1519.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … others. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., … Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108(Supplement 1), 4516–4522.
Cavalli-Sforza, L. L., & Edwards, A. W. (1967). Phylogenetic analysis. Models and estimation procedures. American Journal of Human Genetics, 19(3 Pt 1), 233.
Chaillou, S., Chaulot-Talmon, A., Caekebeke, H., Cardinal, M., Christieans, S., Denis, C., … others. (2015). Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. The ISME Journal, 9(5), 1105–1118.
Chen, J., King, E., Deek, R., Wei, Z., Yu, Y., Grill, D., & Ballman, K. (2018). An omnibus test for differential distribution analysis of microbiome sequencing data. Bioinformatics, 34(4), 643–651.
Chene, L., Sader, C. D., Magalhaes, J., Strozzi, F., Tibaldi, L., Mendez, C., … Bonny, C. (2019). Microbiome derived peptides stimulate strong immune response against tumor associated antigens and trigger in vivo tumor regression after vaccination. AACR.
Chong, P. P., Chin, V. K., Looi, C. Y., Wong, W. F., Madhavan, P., & Yong, V. C. (2019). The microbiome and irritable bowel syndrome–a review on the pathophysiology, current research and future therapy. Frontiers in Microbiology, 10, 1136.
Coelho, L. P., Alves, R., Monteiro, P., Huerta-Cepas, J., Freitas, A. T., & Bork, P. (2019). NG-meta-profiler: Fast processing of metagenomes using ngless, a domain-specific language. Microbiome, 7(1), 84.
Cuthbertson, L., Rogers, G. B., Walker, A. W., Oliver, A., Hafiz, T., Hoffman, L. R., … Van Der Gast, C. J. (2014). Time between collection and storage significantly influences bacterial sequence composition in sputum samples from cystic fibrosis respiratory infections. Journal of Clinical Microbiology, 52(8), 3011–3016.
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., … others. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563.
Deorowicz, S., Kokot, M., Grabowski, S., & Debudaj-Grabysz, A. (2015). KMC 2: Fast and resource-frugal k-mer counting. Bioinformatics, 31(10), 1569–1576.
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., … Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with arb. Applied and Environmental Microbiology, 72(7), 5069–5072.
Ding, X., Zhang, F., Li, Q., Ting, Z., Cui, B., & Li, P. (2019). Selective microbiota transplantation is effective for controlling tourette’s syndrome. Gastroenterology, 156(6), S–456.
Edgar, R. C. (2010). Search and clustering orders of magnitude faster than blast. Bioinformatics, 26(19), 2460–2461.
Edgar, R. C. (2016). UCHIME2: Improved chimera prediction for amplicon sequencing. BioRxiv, 074252.
Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barcelo-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279–300.
Ekekezie, C., Perler, B. K., Wexler, A., Duff, C., Lillis, C. J., & Kelly, C. R. (2020). Understanding the scope of do-it-yourself fecal microbiota transplant. American Journal of Gastroenterology, 115(4), 603–607.
Eloe-Fadrosh, E. A., McArthur, M. A., Seekatz, A. M., Drabek, E. F., Rasko, D. A., Sztein, M. B., & Fraser, C. M. (2013). Impact of oral typhoid vaccination on the human gut microbiota and correlations with s. Typhi-specific immunological responses. PloS One, 8(4), e62026.
Eren, A. M., Borisy, G. G., Huse, S. M., & Welch, J. L. M. (2014). Oligotyping analysis of the human oral microbiome. Proceedings of the National Academy of Sciences, 111(28), E2875–E2884.
Eren, A. M., Maignien, L., Sul, W. J., Murphy, L. G., Grim, S. L., Morrison, H. G., & Sogin, M. L. (2013). Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods in Ecology and Evolution, 4(12), 1111–1119.
Fan, D., Coughlin, L. A., Neubauer, M. M., Kim, J., Kim, M. S., Zhan, X., … Koh, A. Y. (2015). Activation of hif-1\(\alpha\) and ll-37 by commensal bacteria inhibits candida albicans colonization. Nature Medicine, 21(7), 808.
Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783–791.
Fernandes, A. D., Reid, J. N., Macklaim, J. M., McMurrough, T. A., Edgell, D. R., & Gloor, G. B. (2014). Unifying the analysis of high-throughput sequencing datasets: Characterizing rna-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome, 2(1), 15.
Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P., & Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3(4), 289–306.
Foster, J. A., & Neufeld, K.-A. M. (2013). Gut–brain axis: How the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305–312.
Freckleton, R. P., Harvey, P. H., & Pagel, M. (2003). Bergmann’s rule and body size in mammals. The American Naturalist, 161(5), 821–825.
Fu, W. J. (1998). Penalized regressions: The bridge versus the lasso. Journal of Computational and Graphical Statistics, 7(3), 397–416.
Geer, L. Y., Marchler-Bauer, A., Geer, R. C., Han, L., He, J., He, S., … Bryant, S. H. (2010). The ncbi biosystems database. Nucleic Acids Research, 38(suppl_1), D492–D496.
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., … others. (2017). Expert consensus document: The international scientific association for probiotics and prebiotics (isapp) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491.
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). Microbiome datasets are compositional: And this is not optional. Frontiers in Microbiology, 8, 2224.
Gloor, G. B., & Reid, G. (2016). Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Canadian Journal of Microbiology, 62(8), 692–703.
Gloor, G. B., Wu, J. R., Pawlowsky-Glahn, V., & Egozcue, J. J. (2016). It’s all relative: Analyzing microbiome data as compositions. Annals of Epidemiology, 26(5), 322–329.
Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53(3-4), 325–338.
Hehemann, J.-H., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M., & Michel, G. (2010). Transfer of carbohydrate-active enzymes from marine bacteria to japanese gut microbiota. Nature, 464(7290), 908–912.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 65–70.
Holmes, I., Harris, K., & Quince, C. (2012). Dirichlet multinomial mixtures: Generative models for microbial metagenomics. PloS One, 7(2), e30126.
Huang, R., Soneson, C., Germain, P.-L., Schmidt, T., Mering, C. von, & Robinson, M. (2020). TreeclimbR pinpoints the data-dependent resolution of hierarchical hypotheses. http://doi.org/10.1101/2020.06.08.140608
Jaglin, M., Rhimi, M., Philippe, C., Pons, N., Bruneau, A., Goustard, B., … Rabot, S. (2018). Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats. Frontiers in Neuroscience, 12, 216.
Javanmard, A., Javadi, H., & others. (2019). False discovery rate control via debiased lasso. Electronic Journal of Statistics, 13(1), 1212–1253.
Javanmard, A., & Montanari, A. (2013). Confidence intervals and hypothesis testing for high-dimensional statistical models. In Advances in neural information processing systems (pp. 1187–1195).
Javanmard, A., & Montanari, A. (2014). Confidence intervals and hypothesis testing for high-dimensional regression. The Journal of Machine Learning Research, 15(1), 2869–2909.
Jiang, L., Amir, A., Morton, J. T., Heller, R., Arias-Castro, E., & Knight, R. (2017). Discrete false-discovery rate improves identification of differentially abundant microbes. MSystems, 2(6).
Jombart, T., Kendall, M., Almagro-Garcia, J., & Colijn, C. (2017). Treespace: Statistical exploration of landscapes of phylogenetic trees. Molecular Ecology Resources, 17(6), 1385–1392.
Jousset, A., Bienhold, C., Chatzinotas, A., Gallien, L., Gobet, A., Kurm, V., … others. (2017). Where less may be more: How the rare biosphere pulls ecosystems strings. The ISME Journal, 11(4), 853–862.
Kates, A. E., Jarrett, O., Skarlupka, J. H., Sethi, A., Duster, M., Watson, L., … Safdar, N. (2020). Household pet ownership and the microbial diversity of the human gut microbiota. Frontiers in Cellular and Infection Microbiology, 10, 73.
Kelly, T. N., Bazzano, L. A., Ajami, N. J., He, H., Zhao, J., Petrosino, J. F., … He, J. (2016). Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants. Circulation Research, 119(8), 956–964.
Kembel, S. W., Wu, M., Eisen, J. A., & Green, J. L. (2012). Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput Biol, 8(10), e1002743.
Khabbazian, M., Kriebel, R., Rohe, K., & Ané, C. (2016). Fast and accurate detection of evolutionary shifts in ornstein–uhlenbeck models. Methods in Ecology and Evolution, 7(7), 811–824.
Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Research, 26(12), 1721–1729.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621.
Kultima, J. R., Sunagawa, S., Li, J., Chen, W., Chen, H., Mende, D. R., … others. (2012). MOCAT: A metagenomics assembly and gene prediction toolkit. PloS One, 7(10), e47656.
Ley, R. E., Peterson, D. A., & Gordon, J. I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 124(4), 837–848.
Liu, B., Gibbons, T., Ghodsi, M., Treangen, T., & Pop, M. (2011). Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences. Genome Biology, 12(1), 1–27.
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biology, 15(12), 550.
Mai, V., Young, C. M., Ukhanova, M., Wang, X., Sun, Y., Casella, G., … others. (2011). Fecal microbiota in premature infants prior to necrotizing enterocolitis. PloS One, 6(6), e20647.
Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker Jr, C. T., Saxman, P. R., Stredwick, J. M., … others. (2000). The rdp (ribosomal database project) continues. Nucleic Acids Research, 28(1), 173–174.
Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J., & Woese, C. R. (1997). The rdp (ribosomal database project). Nucleic Acids Research, 25(1), 109–110.
Maillet, N., Collet, G., Vannier, T., Lavenier, D., & Peterlongo, P. (2014). COMMET: Comparing and combining multiple metagenomic datasets. In 2014 ieee international conference on bioinformatics and biomedicine (bibm) (pp. 94–98). IEEE.
Maillet, N., Lemaitre, C., Chikhi, R., Lavenier, D., & Peterlongo, P. (2012). Compareads: Comparing huge metagenomic experiments. In BMC bioinformatics (Vol. 13, p. S10). Springer.
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 50–60.
Mathieu-Daudé, F., Welsh, J., Vogt, T., & McClelland, M. (1996). DNA rehybridization during pcr: The ‘c o t effect’and its consequences. Nucleic Acids Research, 24(11), 2080–2086.
McDonald, D., Hyde, E., Debelius, J. W., Morton, J. T., Gonzalez, A., Ackermann, G., … others. (2018). American gut: An open platform for citizen science microbiome research. Msystems, 3(3), e00031–18.
McLachlan, G. J., & Peel, D. (2004). Finite mixture models. John Wiley & Sons.
McMurdie, P. J., & Holmes, S. (2014). Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput Biol, 10(4), e1003531.
Meyerhans, A., Vartanian, J.-P., & Wain-Hobson, S. (1990). DNA recombination during pcr. Nucleic Acids Research, 18(7), 1687–1691.
Modolo, L., & Lerat, E. (2015). UrQt: An efficient software for the unsupervised quality trimming of ngs data. BMC Bioinformatics, 16(1), 137.
Mohty, M., Malard, F., Vekhoff, A., Lapusan, S., Isnard, F., d’Incan, E., … others. (2018). The odyssee study: Prevention of dysbiosis complications with autologous fecal microbiota transfer (fmt) in acute myeloid leukemia (aml) patients undergoing intensive treatment: Results of a prospective multicenter trial. In 60th annual meeting of the american-society-of-hematology (ash) (Vol. 132, p. 4). AMER SOC HEMATOLOGY.
Morgan, X. C., & Huttenhower, C. (2012). Human microbiome analysis. PLoS Comput Biol, 8(12), e1002808.
Morgan, X. C., Tickle, T. L., Sokol, H., Gevers, D., Devaney, K. L., Ward, D. V., … others. (2012). Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biology, 13(9), R79.
O’Toole, P. W., & Claesson, M. J. (2010). Gut microbiota: Changes throughout the lifespan from infancy to elderly. International Dairy Journal, 20(4), 281–291.
Ounit, R., Wanamaker, S., Close, T. J., & Lonardi, S. (2015). CLARK: Fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics, 16(1), 236.
Owen, M., & Provan, J. S. (2010). A fast algorithm for computing geodesic distances in tree space. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(1), 2–13.
Palleja, A., Mikkelsen, K. H., Forslund, S. K., Kashani, A., Allin, K. H., Nielsen, T., … others. (2018). Recovery of gut microbiota of healthy adults following antibiotic exposure. Nature Microbiology, 3(11), 1255–1265.
Park, M. Y., Hastie, T., & Tibshirani, R. (2007). Averaged gene expressions for regression. Biostatistics, 8(2), 212–227.
Pasolli, E., Schiffer, L., Manghi, P., Renson, A., Obenchain, V., Truong, D. T., … others. (2017). Accessible, curated metagenomic data through experimenthub. Nature Methods, 14(11), 1023.
Paulson, J. N., Stine, O. C., Bravo, H. C., & Pop, M. (2013). Differential abundance analysis for microbial marker-gene surveys. Nature Methods, 10(12), 1200–1202.
Pawlowsky-Glahn, V., Egozcue, J. J., & Tolosana Delgado, R. (2007). Lecture notes on compositional data analysis.
Philippot, L., Andersson, S. G., Battin, T. J., Prosser, J. I., Schimel, J. P., Whitman, W. B., & Hallin, S. (2010). The ecological coherence of high bacterial taxonomic ranks. Nature Reviews Microbiology, 8(7), 523–529.
Pinto-Sanchez, M. I., Hall, G. B., Ghajar, K., Nardelli, A., Bolino, C., Lau, J. T., … others. (2017). Probiotic bifidobacterium longum ncc3001 reduces depression scores and alters brain activity: A pilot study in patients with irritable bowel syndrome. Gastroenterology, 153(2), 448–459.
Pistollato, F., Sumalla Cano, S., Elio, I., Masias Vergara, M., Giampieri, F., & Battino, M. (2016). Role of gut microbiota and nutrients in amyloid formation and pathogenesis of alzheimer disease. Nutrition Reviews, 74(10), 624–634.
Plaza Oñate, F., Le Chatelier, E., Almeida, M., Cervino, A. C., Gauthier, F., Magoulès, F., … Wren, J. (2018). MSPminer: Abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics.
Polyak, B. T. (1987). Introduction to optimization. Optimization software. Inc., Publications Division, New York, 1.
Pons, N., Batto, J.-M., Kennedy, S., Almeida, M., Boumezbeur, F., Moumen, B., & others. (2010). METEOR, a platform for quantitative metagenomic profiling of complex ecosystems. Journées Ouvertes En Biologie, Informatique et Mathématiques Http://Www. Jobim2010. Fr/Sites/Default/Files/Presentations/27Pons. Pdf.
Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PloS One, 5(3), e9490.
Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., … others. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60.
Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., … others. (2014). Alterations of the human gut microbiome in liver cirrhosis. Nature, 513(7516), 59–64.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., … Glöckner, F. O. (2012). The silva ribosomal rna gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596.
Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J., & Segata, N. (2017). Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35(9), 833–844.
Ravel, J., Gajer, P., Abdo, Z., Schneider, G. M., Koenig, S. S., McCulle, S. L., … others. (2011). Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences, 108(Supplement 1), 4680–4687.
R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Reardon, S. (2018). Faecal transplants could help preserve vulnerable species. Nature, 558(7709), 173–175.
Regier, Y., Komma, K., Weigel, M., Kraiczy, P., Laisi, A., Pulliainen, A. T., … Kempf, V. A. (2019). Combination of microbiome analysis and serodiagnostics to assess the risk of pathogen transmission by ticks to humans and animals in central germany. Parasites & Vectors, 12(1), 11.
Reynolds, A. P., Richards, G., Iglesia, B. de la, & Rayward-Smith, V. J. (2006). Clustering rules: A comparison of partitioning and hierarchical clustering algorithms. Journal of Mathematical Modelling and Algorithms, 5(4), 475–504.
Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53(1-2), 131–147.
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). EdgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140.
Robinson, M. D., & Smyth, G. K. (2007). Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 23(21), 2881–2887.
Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24.
Sakwinska, O., Berger, B., Zolezzi, I. S., & Holbrook, J. (2017). Prebiotics for reducing the risk of obesity later in life. WO2016026684A1.
Sankaran, K., & Holmes, S. (2014). StructSSI: Simultaneous and selective inference for grouped or hierarchically structured data. Journal of Statistical Software, 59(13), 1.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., … others. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541.
Schretter, C. E., Vielmetter, J., Bartos, I., Marka, Z., Marka, S., Argade, S., & Mazmanian, S. K. (2018). A gut microbial factor modulates locomotor behaviour in drosophila. Nature, 563(7731), 402–406.
Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., & Huttenhower, C. (2012). Metagenomic microbial community profiling using unique clade-specific marker genes. Nature Methods, 9(8), 811–814.
Sergeant, M. J., Constantinidou, C., Cogan, T., Penn, C. W., & Pallen, M. J. (2012). High-throughput sequencing of 16S rRNA gene amplicons: Effects of extraction procedure, primer length and annealing temperature. PloS One, 7(5), e38094.
Sharon, G., Segal, D., Ringo, J. M., Hefetz, A., Zilber-Rosenberg, I., & Rosenberg, E. (2010). Commensal bacteria play a role in mating preference of drosophila melanogaster. Proceedings of the National Academy of Sciences, 107(46), 20051–20056.
Silverman, J. D., Washburne, A. D., Mukherjee, S., & David, L. A. (2017). A phylogenetic transform enhances analysis of compositional microbiota data. Elife, 6, e21887.
Sneath, P. H., Sokal, R. R., & others. (1973). Numerical taxonomy. The principles and practice of numerical classification.
Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by objective methods. Taxon, 11(2), 33–40.
Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R., & Schmidt, T. M. (2015). Rrn db: Improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Research, 43(D1), D593–D598.
Stokholm, J., Blaser, M. J., Thorsen, J., Rasmussen, M. A., Waage, J., Vinding, R. K., … others. (2018). Maturation of the gut microbiome and risk of asthma in childhood. Nature Communications, 9(1), 1–10.
Sun, T., & Zhang, C.-H. (2012). Scaled sparse linear regression. Biometrika, 99(4), 879–898.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.
Truong, D. T., Franzosa, E. A., Tickle, T. L., Scholz, M., Weingart, G., Pasolli, E., … Segata, N. (2015). MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nature Methods, 12(10), 902–903.
Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., … others. (2009). A core gut microbiome in obese and lean twins. Nature, 457(7228), 480–484.
Valdez, Y., Brown, E. M., & Finlay, B. B. (2014). Influence of the microbiota on vaccine effectiveness. Trends in Immunology, 35(11), 526–537.
Vandeputte, D., Kathagen, G., D’hoe, K., Vieira-Silva, S., Valles-Colomer, M., Sabino, J., … others. (2017). Quantitative microbiome profiling links gut community variation to microbial load. Nature, 551(7681), 507–511.
Van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E. G., Vos, W. M. de, … others. (2013). Duodenal infusion of donor feces for recurrent clostridium difficile. New England Journal of Medicine, 368(5), 407–415.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. http://doi.org/10.21105/joss.01686
Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in statistics (pp. 196–202). Springer.
Wilgenbusch, J. C., Huang, W., & Gallivan, K. A. (2017). Visualizing phylogenetic tree landscapes. BMC Bioinformatics, 18(1), 85.
Wood, D. E., & Salzberg, S. L. (2014). Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biology, 15(3), 1–12.
Wright, E. S., Yilmaz, L. S., & Noguera, D. R. (2012). DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Applied and Environmental Microbiology, 78(3), 717–725.
Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.-Y., Keilbaugh, S. A., … others. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science, 334(6052), 105–108.
Xia, Y., Sun, J., & Chen, D.-G. (2018). Statistical analysis of microbiome data with r. Springer.
Xiao, J., Cao, H., & Chen, J. (2017). False discovery rate control incorporating phylogenetic tree increases detection power in microbiome-wide multiple testing. Bioinformatics, 33(18), 2873–2881.
Xinyan, Z., Himel, M., & Nengjun, Y. (2016). Zero-inflated negative binomial regression for differential abundance testing in microbiome studies. Journal of Bioinformatics and Genomics, (2), 1–1.
Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., … others. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222–227.
Yekutieli, D. (2008). Hierarchical false discovery rate–controlling methodology. Journal of the American Statistical Association, 103(481), 309–316.
Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T.-Y. (2017). Ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8(1), 28–36.
Zeller, G., Tap, J., Voigt, A. Y., Sunagawa, S., Kultima, J. R., Costea, P. I., … others. (2014). Potential of fecal microbiota for early-stage detection of colorectal cancer. Molecular Systems Biology, 10(11), 766.
Zhang, C.-H., & Zhang, S. S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1), 217–242.
Zhang, F., Luo, W., Shi, Y., Fan, Z., & Ji, G. (2012). Should we standardize the 1,700-year-old fecal microbiota transplantation? American Journal of Gastroenterology, 107(11), 1755.
Zhang, X., Mallick, H., Tang, Z., Zhang, L., Cui, X., Benson, A. K., & Yi, N. (2017). Negative binomial mixed models for analyzing microbiome count data. BMC Bioinformatics, 18(1), 4.
Zheng, P., Zeng, B., Liu, M., Chen, J., Pan, J., Han, Y., … others. (2019). The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-gaba cycle and schizophrenia-relevant behaviors in mice. Science Advances, 5(2), eaau8317.
Zhernakova, A., Kurilshikov, A., Bonder, M. J., Tigchelaar, E. F., Schirmer, M., Vatanen, T., … others. (2016). Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 352(6285), 565–569.