Available measures in evabic
ebc_allmeasures
An object of class character
of length 18.
True Positive
False Positive
False Negative
True Negative
True Positive Rate or Sensitivity or Recall or Power $$TPR = \frac{TP}{TP + FN} = 1 - FNR$$
True Negative Rate or Specificity $$TNR = \frac{TN}{FP + TN} = 1 - FPR$$
Positive Predictive Value or Precision $$PPV = \frac{TP}{TP + FP} = 1 - FDR$$
Negative Predictive Value $$NPV = \frac{TN}{TN + FN} = 1 - FOR$$
False Negative Rate or Type II Error Rate or Miss Rate $$FNR = \frac{FN}{TP + FN} = 1 - TPR$$
False Positive Rate or Type I Errors Rate or Fall-out $$FPR = \frac{FP}{FP + TN} = 1 - TNR$$
False Discovery Rate $$FDR = \frac{FP}{FP + TP} = 1 - PPV$$
False Omission Rate $$FOR = \frac{FN}{TN + FN} = 1 - NPV$$
Accuracy $$ACC = \frac{TP + TN}{TP + FP + FN + TN}$$
Balanced Accuracy $$BACC = \frac{\frac{TP}{TP + FN} + \frac{TN}{FP + TN}}{2}$$
F1 Score $$F1 = \frac{2 TP}{2TP + FP + FN} = \frac{2}{\frac{1}{TPR} + \frac{1}{PPV}}$$
Positive Likelihood Ratio or LR+ or Likelihood Ratio for Positive Results $$PLR = \frac{TPR}{1 - TNR}$$
Negative Likelihood Ratio or LR- or Likelihood Ratio for Negative Results $$NLR = \frac{1 - TPR}{TNR}$$
Diagnostic Odds Ratio $$DOR = \frac{\frac{TP}{FP}}{\frac{FN}{TN}} = \frac{PLR}{NLR}$$
ebc_allmeasures
#> [1] "TP" "FP" "FN" "TN" "TPR" "TNR" "PPV" "NPV" "FNR" "FPR"
#> [11] "FDR" "FOR" "ACC" "BACC" "F1" "PLR" "NLR" "DOR"