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We consider the problem of incorporating evolutionary information (e.g., taxonomic or

phylogenic trees) in the context of metagenomics differential analysis. Recent results

published in the literature propose different ways to leverage the tree structure to

increase the detection rate of differentially abundant taxa. Here, we propose instead

to use a different hierarchical structure, in the form of a correlation-based tree, as it

may capture the structure of the data better than the phylogeny. We first show that

the correlation tree and the phylogeny are significantly different before turning to the

impact of tree choice on detection rates. Using synthetic data, we show that the tree

does have an impact: smoothing p-values according to the phylogeny leads to equal or

inferior rates as smoothing according to the correlation tree. However, both trees are

outperformed by the classical, non-hierarchical, Benjamini–Hochberg (BH) procedure

in terms of detection rates. Other procedures may use the hierarchical structure with

profit but do not control the False Discovery Rate (FDR) a priori and remain inferior

to a classical Benjamini–Hochberg procedure with the same nominal FDR. On real

datasets, no hierarchical procedure had significantly higher detection rate that BH.

Intuition advocates that the use of hierarchical structures should increase the detection

rate of differentially abundant taxa in microbiome studies. However, our results suggest

that current hierarchical procedures are still inferior to standard methods and more

effective procedures remain to be invented.

Keywords: microbiome, metagenomics, multiple testing, false discovery rate, correlation, phylogeny, taxonomy

1. INTRODUCTION

The microbiota, loosely defined as the collection of microbes that inhabit a given environment,
has become an increasingly important research topic in the last two decades as it proves to either
play an active role or be associated with health conditions (Lynch and Pedersen, 2016; Opstelten
et al., 2016). For instance, specific changes in microbiome composition have been associated to
Inflammatory Bowel Diseases (IBD) (Morgan et al., 2012) and liver cirrhosis (Qin et al., 2014).
The microbiota also influences efficiency of cancer therapy (Routy et al., 2018) and there is a
growing interest in finding biomarker microbes that could be used to predict the response to
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treatment (Behrouzi et al., 2019). The effect of the microbiota is
not limited to human health: works in plant biology show that
the root microbiota can improve resistance to stress (Trivedi
et al., 2017). Molecules produced by the microbiota can also
have a profound impact on stress tolerance (Bernardo et al.,
2017), plant health (Mendes et al., 2011), and pathogen control
(Bartoli et al., 2018).

There are two main approaches to profile the microbiome
using sequence data: amplicon sequencing and whole genome
shotgun (WGS) sequencing. In amplicon sequencing, a marker-
gene that acts a bacterial taxonomic “barcode” (e.g., the 16S
rRNA gene) is first amplified and then sequenced. The resulting
sequences are then used to build a taxonomic profile of the
sample. By contrast, no prior amplification of a specific region
is required for WGS sequencing as it sequences fragments
from the whole metagenome. Although WGS sequencing is
less affected by technical bias than amplicon sequencing and
can profile both taxonomic and functional composition of
the microbiome, it suffers from higher costs and requires
complex bioinformatics pipelines. We focus in this work on
taxonomic profiles.

In the amplicon approach, sequence reads are first clustered
into Operational Taxonomic Units (OTUs) using either a 97%
sequence similarity threshold (Caporaso et al., 2010), threshold-
free agglomerative approaches (Mahé et al., 2015; Escudié
et al., 2017) or divisive approaches to produce taxonomic
oligotypes (Eren et al., 2015) or Amplicon Sequence Variants
(ASVs) (Callahan et al., 2016). Divisive and threshold-free
agglomerative approaches achieve finer taxonomic resolutions
than the threshold-based similarity approach. Using WGS in
the ecosystems where a bacterial gene catalog is available, such
as the human gut (Li et al., 2014) or the pig gut (Xiao et al.,
2016), the standard approach consists in mapping the reads
against the catalog and then clustering the bacterial genes
based on their abundance profiles to produce metagenomic
species (MGS) (Nielsen et al., 2014) or clusters of co-
abundant genes to reconstruct microbial pan-genomes (MSP)
(Plaza Oñate et al., 2018). We will refer to taxa, noting
that the term can designate OTUs, ASVs, oligotypes, MGSs,
MSPs and generally any feature found in abundance tables
(obtained by counting the number of copies of each feature in
each sample).

The microbial taxa share a common evolutionary history that
can be encoded by a phylogenetic tree. For amplicon sequencing,
the phylogenetic tree of taxa can even be reconstructed based
on the sequence divergence of taxa (Price et al., 2010).
Related taxa are generally thought to perform similar biological
functions. For example, Philippot et al. (2010) shows a strong
association between taxonomic lineage and ecological niche in
soil microbiota. Chaillou et al. (2015) reports similar associations
in food microbial ecosystems.

These associations suggest that the biological functions
responsible for a given phenotype exhibit a phylogenetic signal
and should thus be shared by closely related species. This
prompted the development of several tree-based hierarchical
methods, built under the assumption that taxa associated to
a phenotype of interest are clustered in the tree (Martiny

et al., 2015). Carroll et al. (2014) considers group-based
procedures, with groups defined as clades of the tree. Sankaran
and Holmes (2014) proposes an implementation of the
hierarchical testing procedure of Yekutieli (2008) aimed at
leveraging the phylogenetic tree of the taxa to increase
statistical power while controlling the False Discovery Rate
(FDR). The FDR is unfortunately only known a posteriori,
and the implemented testing-procedure is limited to one-way
ANOVA with no correction for differences in sequencing depths.
Matsen and Evans (2013) and Washburne et al. (2017) develop
phylogenetic eigenvalues decomposition of species compositions
for exploratory data analysis. Finally, Xiao et al. (2017) uses the
tree as a regularization structure to shrink the test statistics of
close-by taxa toward the same value. They use a permutational
procedure to control the FDR and report good empirical control
of the FDR but the method lacks theoretical grounding.

Unfortunately for phylogeny-based methods, the association
between ecological niche and taxonomy reported in Philippot
et al. (2010) holds for high-rank taxa but breaks down
for lower-rank taxa. Indeed, phylogeny reflects the global
evolutionary relatedness but the genes responsible for a specific
phenotype may have a substantially different history, especially
if they are transmitted horizontally rather than vertically,
as is frequently the case for bacteria. In particular, mobile
elements driving adaptation (Kazazian, 2004) are likely to be
spread out in the phylogeny (Brito et al., 2016) and the
phylogenetic clades will not reflect their distribution across
species. We question in this work the premise that the
phylogenetic (or taxonomic) tree is the relevant hierarchical
structure to incorporate in differential studies. We advocate
instead the use of a correlation-tree: a clustering tree build
from co-abundance data taxa, where taxa with highly correlated
abundances are very close in the tree. We argue that the
correlation tree is a better proxy of biological functions than
the phylogeny and can increase the detection with no loss of
FDR control.

Using the classical Billera–Holmes–Vogtmann (Billera et al.,
2001) and Robinson–Foulds (Robinson and Foulds, 1981)
distances on the treespace, we study the distance between the
phylogenetic tree and the correlation trees in several previously
published datasets. The datasets cover the vaginal microbiome
(Ravel et al., 2011), the gut microbiome (Zeller et al., 2014), food-
associated microbiomes (Chaillou et al., 2015) and microbiomes
from a global survey (Caporaso et al., 2011). The former two
have a narrow environmental range, as they encompass only
one ecosystem, whereas the latter two have a broader range, as
they encompass several ecosystems. We compare those distances
to the average distance between (i) a focal tree (phylogeny or
correlation) and a random tree and (ii) between two random
trees to investigate the relationship between proximity in the tree
and correlated abundances. We then assess the impact of tree
selection on differential studies using both extensive simulation
studies and reanalysis of previously published datasets. We
compare the results obtained with the phylogeny, the correlation
tree, and the standard Benjamini–Hochberg correction. Finally,
we discuss the pros and cons of using one or the other in
hierarchical procedures and some limitations of our work.
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2. MATERIALS AND METHODS

2.1. Trees
We consider in this study different hierarchical structures,
or trees: the phylogenetic tree, the taxonomic tree and the
correlation tree.

2.1.1. Phylogenetic Tree
The phylogeny encodes the common evolutionary history of the
taxa. In the amplicon context, it is usually reconstructed based
on the sequence divergence of the marker-gene (Price et al.,
2010) and branch lengths correspond to the expected number of
substitutions per nucleotide.

2.1.2. Taxonomic Tree
When the phylogeny is not available but taxonomic annotations
are, we fall back on the taxonomic tree instead. Inner nodes
correspond to coarse taxonomic ranks (e.g., phylum, class,
order, etc.). The hierarchical structure is reconstructed from
lineages extracted from regularly updated databases like the one
from NCBI (Geer et al., 2009). Branch lengths correspond to
the number of levels in the hierarchy: e.g., a branch between
species-level and genus-level nodes has length 1, a branch
between species-level and genus-level nodes has length 2. Unlike
phylogenetic trees, taxonomic trees are highly polyatomic.

2.1.3. Correlation Tree
The correlation tree is based on the abundance profiles of
taxa across samples and built in the following way. We first
compute the pairwise correlation matrix, using the Spearman
correlation and excluding “shared zeros”, i.e., samples where both
taxa are absent. We then change this correlation matrix into a
dissimilarity matrix using the transformation x !→ 1− x. Finally,
we use hierarchical clustering with Ward linkage on this matrix
to create the correlation tree. Branch lengths correspond to the
dissimilarity cost of merging two subtrees.

2.2. Distances Between Trees
We consider two different distances between trees: the
Robinson-Foulds distance, or RTF (Robinson and Foulds,
1981), the Billera–Holmes–Vogtmann distance, or BHV (Billera
et al., 2001). Those distances are computed using different
characteristics of the tree (topology, branch lengths, etc.) and
emphasize different features.

The RF distance is defined on topologies, i.e., trees without
branch lengths, and based on elementary operations: branch
contraction and branch expansion. A branch contraction step
creates a polytomy in the tree by shrinking a branch and merging
its two ending nodes whereas a branch expansion step resolves a
polytomy by adding a branch to the tree. For any pair of trees, it
is possible to turn one tree into the other using only elementary
operations. The RF distance is the smallest number of operations
required to do so. Note that the RF distance gives the same
importance to all branches, no matter how short or long.

The BHV distance is defined on trees and accounts for both
topology and branch length. All possible trees are embedded into
a common treespace with a complex geometry. Trees with the
same topology are mapped to the same orthant, and hyperplanes

share a common boundary if and only if they are at RF-distance
2 (one contraction and one expansion step away). For any pair
of trees, there is a path in treespace between those two trees. The
BHV distance is the length of the shortest of these paths. It can be
thought of as the generalization of the RF-distance that upweights
long branches and downweights short branches.

2.3. Forest of Trees
We generated a forest of boostrapped trees and a forest of
random trees in the following way. For the boostrapped forest,
we generated NB bootstrap datasets using resampling with
replacement (Felsenstein, 1985; Wilgenbusch et al., 2017). Each
bootstrap dataset was used to compute a correlation matrix and a
correlation tree as detailed in section 2.1.

Random trees were generated from a seed tree by shuffling
the leaves labels. This allowed us to generate a forest of random
trees with the same number of branches as the seed tree. This
is especially important for RF-distances as they scale with the
number of branches and we want to study both non-binary
taxonomic trees with a high number of polytomies and low
number of branches and binary correlation trees, with a high
number of branches. We generated NT random trees from the
taxonomic tree and NC from the correlation tree.

2.4. Testing Tree Equality
The correlation tree is reconstructed from abundance profiles
rather than molecular sequences and/or lineages and may
therefore be poorly estimated. We use the bootstrap forest to
compute a confidence region around the correlation tree. The
random trees were used to create a null distribution of distances
between random trees.

The full set of 2+ NB + NT + NC trees was used to construct
BHV and RF distance matrices. The distance matrices were
then used to visualize a 2D-projection of all trees via Principal
Coordinates Analysis (PCoA) (Gower, 1966; Jombart et al., 2017;
Wilgenbusch et al., 2017). Bootstrap trees were used to test
whether the taxonomy was in the confidence region of the
correlation tree whereas random trees were used to test whether
the taxonomic and correlation trees were closer to each other
than to random trees.

We also compared the distance from the correlation tree to
each group of trees using a one-way ANOVA.

2.5. Differential Abundances Studies
The literature abounds in differential analysis methods dedicated
to abundance data (Soneson and Delorenzi, 2013). Most of them
differ in the normalization and preprocessing steps (Dillies et al.,
2013; Chen et al., 2018). Count data coming from metagenomic
studies are very similar to those found in RNA-Seq studies. The
former one may exhibit more zeros entries but the same types of
normalizations and statistical models can be used for both types
of data.

As the focus of the paper is not on normalization procedure,
we therefore used only a simple and classic normalization (Chen
et al., 2018) to assess the impact of taking into account the data
hierarchical structure in the differential abundance testing.
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We briefly present two methods for differential abundance
testing (DAT) that leverage a tree-like structure: z-score
smoothing as proposed in Xiao et al. (2017) and hFDR as
proposed in Yekutieli (2008).

2.5.1. z-Scores Smoothing
Given any taxa-wise DAT procedure, p-values (p1, . . . , pn) are
first computed for each taxa (leaves of the tree) and then
transformed to z-scores using the inverse cumulative distribution
function of the standard Gaussian. Similarly, the tree is first
transformed into a patristic distance matrix

(

Di,j
)

and then into
a correlation matrix Cρ =

(

exp
(

−2ρDi,j
))

between taxa. The z-
scores z = (z1, . . . , zn) are then smoothed using the following
hierarchical model:

z | µ ∼ Nm
(

µ, σ 2Im
)

µ ∼ Nm
(

γ 1m, τ
2Cρ

)

where µ captures the effect size of each taxa. The maximum a
posteriori estimator µ

∗ of µ is given by

µ∗ =
(

Im + kC−1ρ

)−1 (

kC−1ρ γ 1m + z
)

where k = σ 2/τ 2

and the FDR is controlled using a resampling procedure. This
method intuitively pulls effect sizes of taxa close-by in the tree
toward the same value. In particular, a differential taxa with large
effect size and small p-value but surrounded by non-differential
taxa in its phylogenetic neighborhood will be considered a
fluke: its smoothed effect size will be shrinked toward zero
and its corrected p-value will increase toward non-significance.
Likewise, a taxa that is barely differential but phylogenetically
close to differential taxa will be rescued toward significance:
it’s effect size will increase and its p-value decrease. Extreme
smoothing creates clades where all taxa are simultaneously
differential or simultaneously non-differential. k and ρ are
hyperparameters controlling the level of smoothing. Low (resp.
high) values of ρ (resp. k) correspond to high smoothing. Finally,
k, γ , and ρ are estimated using generalized least-squares.

2.5.2. Hierarchical FDR
Hierarchical FDR (hFDR) considers a different framework where
differential abundance can be tested not only for a single taxa
but also for groups of taxa, corresponding to inner nodes or
clades of the tree. hFDR uses a top-down approach: tests are
performed sequentially and only for nodes whose parent node
were previously rejected. Formally, the procedure is described in
Algorithm 1.

Let ch(N) be the children of a node N, L the leaves of
the tree, D the set of rejected nodes (discoveries), S the stack
of nodes whose children are yet to be tested and BHα(F) the
discoveries within family F when testing with a Benjamini–
Hochberg procedure at level α.

hFDR guarantees an a posteriori global FDR control for leafs
at level

α′ = 1.44× α ×
#discoveries+ #families tested

#discoveries+ 1
. (1)

Algorithm 1Hierarchical FDR

1: D← ∅ Initialize discoveries
2: S ← Root Initialize stack
3: while S ≠ ∅ do
4: choose N in S

5: N ← BHα(ch(N)) Discoveries in children of
N

6: D← D ∪N Update discoveries
7: S ← (S \ N) ∪ (N \ L) Update stack
8: end while
9: return D for full-tree discoveries or D ∩ L for leaves

discoveries

FIGURE 1 | Example wokflow of hFDR. Nodes are numbered from 1 to 12

and the corresponding hypothesis are labeled H1 to H12. hFDR first tests and

rejects H1 and H2. It then tests the family (H3,H4), as children of H1, and

rejects H4 but not H3. None of H7, H8 and H9 are tested as their parent H3 is

not rejected. H10 is tested and rejected. It proceeds similarly in the tree rooted

at node 2. In this example, there are 3 leaf-level discoveries (H10, H11 and H12)

and 5 families were tested. Then the a posteriori global FDR for leaves is

1.44× α × 2.

The hFDR procedure is illustrated in Figure 1.

2.5.3. Implementations
These two algorithms are implemented in R packages (R Core
Team, 2018): structFDR (Xiao et al., 2017) for the z-scores
smoothing and structSSI (Sankaran and Holmes, 2014)
for hFDR.

The z-scores smoothing algorithm as implemented in
structFDR includes a fallback to standard, non-hierarchical,
independant tests when too few taxa are detected. It was
not part of the original algorithm and we therefore used a
vanilla implementation, with no fallback (see modified code
in correlationtree package), to specifically evaluate the
impact of the tree in the procedure. structFDR requires
the user to specify its test. We used non-parametric ones:
Wilcoxon rank sum for settings with two groups and Kruskal–
Wallis (Hollander and Wolfe, 1973) for settings with three or
more groups.

In contrast, the hFDR procedure is only available for one-
way ANOVA on the groups, and corresponding F-test, and does
not correct for differences in sequencing depths. Moreover, we
noticed that the global FDR control was off by the corrective
factor of 1.44 in Equation (1). We corrected the output of
structSSI to use the correct FDR values in our analyses.
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2.6. Methods Evaluation
We tested the impact of tree choice on the performance
of both procedures (z-score smoothing and hFDR) on
real data and synthetic data simulated from real dataset
in one of two following ways. The code and data used to
perform the simulations are available on the github repository
github.com/abichat/correlationtree_analysis.

2.6.1. Parametric Simulations
The parametric simulations use the following scheme. First,
a Dirichlet-multinomial model D(γ ) is fitted to the gut
microbiome dataset of healthy patients from Wu et al.
(2011). Second, a homogenous dataset is created by sampling
count vectors Si from the Dirichlet-Multinomial distribution:
(i) a proportion vector αi is drawn from D(γ ), (ii) the
sequencing depth N is drawn from a negative binomial
distribution NB(10, 000, 25) with mean 10, 000 and size 25
and finally (iii) the counts Si of sample i are sampled from
a multinomial distribution M(N,αi). We acknowledge that
Dirichlet-multinomial distributions can only sample negatively
correlated species but the goal here is to closely reproduce the
simulation scheme from Xiao et al. (2018).

Differential abundances are then produced as follows. First,
each sample is randomly assigned to class A or B. Second,
nH1 taxa (representing up to 20% of all taxa) were sampled
uniformly among all taxa. Finally, the abundances of those taxa
are multiplied by a fold-change (chosen in {5, 10, 15, 20}) in
group B. The process is illustrated in Figure 2.

2.6.2. Non-parametric Simulations
Non-parametric simulations proceeded like the parametric ones
detailed in section 2.6.1 with three major differences. First, we
used a different dataset with homogeneous samples: the gut
microbiome of healthy individuals from North America and Fiji
Islands (Brito et al., 2016). Second, we did not fit a Dirichlet-
Multinomial to the original dataset but used it as such, to
preserve the potential complex correlation structure present in
the dataset. Finally, differentially abundant taxa were sampled
only from highly prevalent taxa (prevalence ≥ 90%) to ensure
that DAT procedures were affected by effect size (fold-change)
and hierarchical correction, rather than by sparsity.

2.6.3. Accuracy Evaluation
We used true positive rate (TPR) and FDR to evaluate the
performance of z-scores smoothing used with five different
trees: no tree or standard Benjamini–Hochberg (BH), taxonomy,
correlation tree, random taxonomy and random correlation tree.
BH is our baseline and the random trees are here to evaluate the
impact of uninformative trees, with different granularity levels,
on the procedure.

We evaluated hFDR by comparing the results obtained using
either the taxonomy or the correlation tree in several datasets.

2.7. Datasets
We used seven different datasets for the experimental part
(see Table 1 for a summary). One was used to study the
difference between correlation and phylogenetic trees,

FIGURE 2 | Dataset generation process. (A) Original count data. (B) Samples

are randomly assigned to class A or B. (C) nH1 taxa are randomly selected

among the most prevalent ones. (D) Their abundances are multiplied by the

fold-change to produce the final count table.

TABLE 1 | Summary table of the different datasets used in this study with

information on biome type, taxonomic rank used for the analysis, corresponding

number of taxa, number of samples and analyses performed on the dataset:

comparison of the correlation and taxonomic trees (Tree), creation of synthetic

datasets (Simulations), or impact of the tree on differential abundance procedures

(DA).

Dataset Biome Rank Taxa Samples Analysis Publication

Chlamydiae Varied OTU 21 26 Tree & DA Caporaso et al.,

2011

Ravel Vaginal Genus 40 396 Tree Ravel et al., 2011

Wu Gut OTU 400 98 Simulations Wu et al., 2011

Zeller Gut Genus 119 199 Tree & DA Zeller et al., 2014

Zeller MSP Gut MSP 878 199 DA Zeller et al., 2014

Chaillou Food OTU 499/97 64 Tree & DA Chaillou et al.,

2015

Brito Gut OTU 77 112 Simulations Brito et al., 2016

one to assess the impact of tree choice on difference
abundance testing, three for both and the last two to
generate synthetic datasets as described previously. All
datasets used in this study are available on the github repository
github.com/abichat/correlationtree_analysis.

Three of the four datasets used for tree comparison (Ravel,
Chaillou, and Zeller) were chosen because they are well-
suited for bootstrapping correlation trees: they had enough
samples and enough variability in taxa counts to ensure that a
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meaningful correlation tree could be computed on bootstrapped
datasets. They also represent diverse microbiome with contrasted
biodiversity levels: vaginal microbiome for Ravel, food-associated
microbiome for Chaillou and gut microbiome for Zeller. Briefly,
Ravel et al. (2011) studied a cohort of 396 North-American
women from 4 ethnic groups using metabarcoding on the V1-V2
region of 16S rRNA gene. Chaillou et al. (2015) studied food-
associated microbiota of 80 processed meat and seafood products
using metabarcoding on the V3-V4 region of the 16S rRNA gene.
Zeller et al. (2014) considered the gut microbiota of 199 subjects
(42 with adenomas, 91 with colorectal cancer and 66 healthy
ones), using both shotgun deep sequencing and metabarcoding
on the V4 region of 16S rRNA gene. Zeller refers to the 16S rRNA
fraction of the data. Details of bioinformatics treatments used to
produce abundance count tables are available in the respective
publications. All datasets were aggregated at a given taxanomic
level and taxa with a prevalence lower than 5% were filtered out.

The fourth one (Chlamidya) was used in Sankaran and
Holmes (2014) to assess the performance of hFDR and is
an excerpt from the data collected in Caporaso et al. (2011).
It consists of bacteria from the Chlamydia phylum and is
distributed with StructSSI (Sankaran and Holmes, 2014).
Finally, the Zeller MSP data originates from the same study as the
Zeller data (Zeller et al., 2014). It was created from the shotgun
data by reconstructing Metagenomics Species Pan-genomes
(MSPs) abundance count table, as reported in Plaza Oñate et al.
(2018). Briefly, reads were quality-filtered and unique reads were
mapped against the 9.9 million Integrated Gene Catalog (Li
et al., 2014) using BBmap (Bushnell, 2014). The gene catalog is
organized into 1,696 MSPs and each MSPs has set a core genes.
The relative abundance of eachMSPs was computed by summing
the relative abundances of all core genes in that MSP.

The two datasets used to generate synthetic data are the Wu
and Brito datasets. The former comes from Wu et al. (2011),
a study linking the gut microbiome to alcohol consumption
in 98 patients, and was used in Xiao et al. (2017). The latter
originates from (Brito et al., 2016), where the gut microbiomes
of 81 metropolitan North Americans were compared to
those of 172 agrarian Fiji islanders using a combination of
single-cell genomics and metagenomics. The metagenomes of
Fiji islanders is distributed as part of the R/Bioconductor
CuratedMetagenomicsData package (Pasolli et al., 2017; R
Core Team, 2018) and only the data from the 112 adults were
kept, to make it as homogeneous as possible.

3. RESULTS AND DISCUSSION

We first examine the relation between the correlation tree and the
phylogeny (or taxonomy) using the Ravel (vaginal microbiome),
Zeller (gut microbiome) and Chaillou (food microbiome)
datasets. As they contain a high number of samples, they are the
best suited for bootstrapping correlation trees. Since phylogeny
and correlation-based tree have very different topologies, we
perform two simulations studies to compare a hierarchical
procedure (z-score smoothing) based on (i) the phylogeny or
(ii) the correlation-based tree to (iii) a standard non-hierarchical

procedures (BH) in terms of detection power and FDR control
and assess whether some topologies are better than others
and whether z-score smoothing outperforms standard BH.
Finally, we analyze the Chlamidya (varied biome), Chaillou
(food microbiome), and Zeller (gut microbiome) datasets using
the hFDR hierarchical procedure to assess the same points for
this procedure.

3.1. The Taxonomy Differs From the
Correlation Tree
In all studied datasets, the correlation tree is closer to its bootstrap
replicates than to either the taxonomy or the randomized trees
(Figure 3, top row). The differences are statistically significant
(p < 10−16, one-way ANOVA with Tukey’s HSD post-hoc test).

Similarly, the PCoA results (Figure 3, bottom row) highlight
two or three tree islands (Jombart et al., 2017): one for the
correlation tree and its bootstrap replicates, one for the taxonomy
and its randomized replicates and the final one for randomized
correlation trees. All random trees can belong to the same island,
as seen in the Ravel dataset. The first axis of PCoA represents
5–10% of the explained variance and systematically separates the
taxonomy from the correlation tree. Moreover, the taxonomy is
neither in the bootstrap confidence region of the correlation tree,
nor closer to it than a randomized tree.

The only exception is the Chlamydiae dataset (Caporaso
et al., 2011), where the phylogeny is within the confidence
region of the correlation (Figure S1). Note however that this
dataset is very small (26 samples) and has many taxa with low
abundances, resulting in an extremely large confidence region
for the correlation tree. It is also the only one that covers
environments ranging from stool to soil and freshwater and thus,
for which ecological niche and taxonomy may overlap (Philippot
et al., 2010).

In light of these results, we find that the phylogeny is different
from the correlation tree, especially when focusing on a single
biome. In other words, taxa with similar abundance profiles are
not clustered in the phylogeny and the phylogeny may therefore
not be a good proxy to find groups of diffentially abundant taxa.

Similar results are observed when using RF distance instead of
BHV distance (Figure S2).

3.2. Pros and Cons of the Different Trees
Although phylogenies (resp. taxonomies) are evolutionary (resp.
ecologically) meaningful and increasingly available, they do
not capture similarities between taxa in terms of abundance
profiles. For example, if abundances are driven by a phenotype
regulated by a mobile element (e.g., an antibiotic resistance
gene), evolutionary and ecological histories are not informative.
Furthermore, when performing differential abundance analyses
with genes (metatranscriptomics) or metagenomics-based taxa
such as MSPs and metagenome-assembled genomes, many of
which are poorly annotated, neither a taxonomy nor a phylogeny
is available.

In contrast, the correlation tree is constructed from the
abundance data and can thus always be used. By its very
definition, it clusters taxa with similar abundance profiles.
Unfortunately, it suffers from limitations of its own. First, it
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FIGURE 3 | BHV distances between various trees for three datasets: Ravel (left), Zeller (center) and Chaillou (right). (Top) Violinplots and notched boxplots of

distances to the correlation tree. The distance between taxonomy (or phylogeny) and correlation is indicated by the red line. (Bottom) PCoA projection of all distances

on the principal plane. The correlation tree is in purple (△), taxonomy (or phylogeny) in red (!), bootstrapped trees in blue, random correlation trees and random

taxonomies (or phylogenies) in green and orange respectively.

is estimated from the data and thus sufficient data should be
available to build a robust correlation tree. This may be a problem
in the microbiome field where the number of samples is usually
smaller (sometimes much smaller) than the number of taxa. This
is also problematic for rare taxa, where shared zeroes may distort
the correlation. The problem is usually alleviated by filtering
out taxa with low abundance and/or prevalence. However, such
filters disproportionately affect rare taxa and lead to a severe
underestimation of the ecological role played by rare taxa (see
Jousset et al., 2017 for a review).

Second, since the same data are used to build the correlation
tree and to test differential abundance, some care should be
taken not to overfit the data. For example, permutation-based
tests are valid because the group labels are not used during the
tree construction and are thus independent of the hierarchical
structure (Goeman and Finos, 2012) but other tests should be
used with caution.

3.3. Simulation Study
3.3.1. Non-parametric Simulations
Note first that z-smoothing numerically failed and did not
produce any results for 4% of the simulations (ranging from 2%
for the randomized correlation trees to 8% for the correlation
trees). Second, the hyperparameters k and ρ controlling the
level of smoothing are often very far from 1 (below and above,
respectively) resulting in little to no smoothing. Figure 4 shows
the impact of smoothing on z-scores: in more than half of the

simulations, the z-scores were shifted by less than 10−2 units
in either direction. Among the different topologies tested, the
phenomenon was the strongest for the correlation trees: the z-
scores were shifted by more than 10−2 units in less than 5% of
the simulations.

Concerning FDR control, the standard BH procedure was
the only one that achieved a nominal FDR rate below 5%
across different fold changes and proportions of null hypothesis
(Figure 5, bottom row). All other procedures exceeded the target
rate, reaching nominal rates of up to 7%, when the number of null
hypothesis grew beyond 90%.

BH was similarly the most powerful method across all fold
changes and proportions of null hypothesis (Figure 5, top row),
with correlation tree and randomized correlation trees coming
close second and third. BH, correlation tree and randomized
trees outperformed the taxonomy in all settings, resulting in TPR
increase of up to 0.15.

The comparatively bad result of the taxonomy is also
expected from our simulation settings as the taxonomy is
independent from simulated differential abundance. Forcing
the discoveries to be close in the tree therefore introduces
a systematic bias and results in a loss of power, especially
for differential taxa that are isolated, and an increase in false
discoveries, especially for non-differential taxa that are close to
differential ones.

The better results of a priori uninformative random trees
compared to the taxonomy were however more surprising,
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FIGURE 4 | Average absolute difference between z-scores before and after smoothing. In most simulations, smoothing only marginally changes the results.

FIGURE 5 | Mean and Squared Error of the Mean (SEM) of the true positive rates TPR (Top) and FDR (Bottom) per different fold changes (facets) for non-parametric

simulations. The different FDR control procedures are color-coded. Mean and SEM are computed over 600 replicates.

especially in light of the similar levels of smoothing for all those
trees. It turned out that the random trees were, on average, closer
to the correct correlation structure of differential taxa than the
taxonomy and therefore had a lesser negative impact on the
detection power.

It is clear from these results that using a tree reflecting
the abundance data true structure, such as the correlation
tree, does not increase the number of discoveries but does
not degrade the performance of the method either. In
contrast, using a wrong structure degrades the detection power
from only slightly at best (for random trees) to quite a
lot (taxonomy).

3.3.2. Parametric Simulations
Parametric simulations showed exactly the same patterns as
non-parametric ones. Z-scores smoothing was limited in most
replicates and almost always null when using the correlation tree
(Figure S3). BH was the only procedure with a nominal FDR
below the target rate of 5% in all settings and all trees led to
nominal above the threshold when the proportion of differential
taxa was low (Figure S4, bottom row). Finally, BH had the
highest TPR among all methods (Figure S4, top row).

The results differed from the non-parametric ones in one
important aspect: all methods had low TPR, below 0.15, whereas
they achieve TPR higher than 0.85 in the non-parametric setting.

Frontiers in Microbiology | www.frontiersin.org 8 April 2020 | Volume 11 | Article 649

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Bichat et al. Microbiome Multiple Testing

This difference is mainly due to the parametric simulation
scheme, reused from Xiao et al. (2017): differential taxa are not
pre-filtered based on their prevalence and can thus have a very
high proportion of zeros in the worst case. Multiplication by a
fold-change, no matter how high, leaves those zeroes and their
corrresponding ranks unchanged. This in turn strongly degrades
the ability of the rank-based Wilcoxon test, to find differences
between groups among those taxa.

3.4. Analysis of Real Datasets
3.4.1. Reanalysis of Chlamydiae Dataset
The Chlamydiae dataset consists of 26 samples distributed over 9
very different environments (feces, freshwater, human skin, sea,
...). Differential abundance of the OTUs across the environment
was tested using the same parameters as in the original article
(hFDR on the phylogeny, α = 0.1). The test identified 8
differential OTUs with a global a posteriori FDR of α′ = 0.32.
Substituting the correlation tree to the phylogeny in this analysis
led to the detection of 3 additional OTUs, at a comparable global
FDR of α′ = 0.324.

Abundance boxplots of these three additional OTUs
(Figures 6E,F, insets) show that these OTUs are much more
abundant in soil samples and almost specific to that environment,
validating their differentially abundant status. In that example,

the correlation tree reflected the structure of the data better
than the phylogeny and increases the power at no cost to the
nominal FDR.

Figure 6 shows the location of evidences (e = − log10(p))
and differential OTUs on both the phylogeny and correlation
trees. OTU 547579, highlighted with a red star, is one the three
additional OTUs. It was not tested with the phylogeny because
it is the only differential taxa in its clade (Figure 6B) and its
top-most ancestor was not rejected. In contrast, it belongs in
the correlation tree to a group of soil-specific taxa and the
hierarchical procedures sequentially rejected all its ancestors so
that it was also tested and rejected.

With this top-down approach, the correlation tree is a better
candidate hierarchy than the phylogeny. Indeed, the signals
of differential OTUs can be averaged out with noise and/or
conflicting signal in the phylogeny, they are pooled together in
the correlation tree. This makes it easier to reject high level
internal nodes and descend the tree toward differential OTUs.

It should be noted however that the a posteriori global FDR
is quite high at 0.324. Using the standard BH with a FDR of
0.324 results in 4 new discoveries, for a total of 15. hFDR, with
either the correlation or the phylogeny, does not outperform the
classical BH procedure. This discrepancy might be explained by
the global FDR computation used in hFDR which controls the

FIGURE 6 | Evidences of OTUs estimated by hFDR with phylogeny (A,C) or correlation tree (B,D) represented on phylogeny (A,B) or correlation tree (C,D). OTUs

detected as differential are colored in purple, those tested but not detected as differential in yellow. (E,F): Abundances of OTUs detected only by the correlation tree in

different environments. OTU 547579 in (E) is highlighted with a red star in (B,D). Environment are abbreviated as SO, soil; SE, sediment; OC, ocean; CK, creek; FW,

fresh water; SK, skin; TO, tongue; FE, feces; MO, mock.

Frontiers in Microbiology | www.frontiersin.org 9 April 2020 | Volume 11 | Article 649

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Bichat et al. Microbiome Multiple Testing

FDR in the worst case scenario. The actual global FDR could be
much lower than this pessimistic bound.

3.4.2. Analysis of Chaillou Dataset
The Chaillou dataset consists of 64 samples uniformly distributed
across 8 food types (ground veal, ground beef, poultry sausages,
sliced bacon, shrimps, cod fillet, salmon fillet, smoked salmon).
Differential abundances of OTUs from the Bacteroidetes phylum
(97 OTUs) across food types was tested with hFDR procedure
(α = 0.01, both phylogeny and correlation tree). The test had
a global a posteriori FDR of 0.04 for both the phylogeny and
the correlation tree and detected 28 differential OTUs with the
phylogeny and 34 with the correlation tree. Similarly, with a 0.04
FDR level, vanilla BH leads to 55 discoveries.

Unlike the Chlamydiae dataset, only 22 OTUs were detected
by both methods. Careful examinations of those 22 show that
each of them (i) is missing, or below the detection level, in at least
one of the 8 food type of the studies whereas and (ii) has high
prevalence (≥0.75%) and abundance in at least one other food
type. We can thus classify those 22 as true positives rather than
false discoveries.

The abundance profiles of the 18 OTUs found only by the
correlation tree (hereafter cor-OTUs) or the phylogeny (phy-
OTUs) (Figure S5) show marked differences across the 8 food
types, validating their differential status. As was the case in
the Chlamydiae dataset, cor-OTUs are often isolated in the
phylogeny (Figure S6) and thus not even tested during the
hierarchical procedure as they are averaged with low-signal taxa.

In contrast, phy-OTUs are often close to detected taxa in
the correlation-tree but not detected because of the F-test
implemented in StructSSI. For example, the three phy-OTUs
0656, 1495, and 0241 belong to a cluster of five shrimp-specific
OTUs but the two others (0516 and 0519) have some outlier
counts and comparatively higher counts that the three phy-OTUs
(Figure S7, right). Aggregation at internal nodes leads to high
variance which decreases the significance of the F-test: p-values
at the internal nodes do not pass the threshold and the leaves
are not tested. Replacing the F-test with the Kruskal–Wallis test,

which is more robust to outliers, led to the detection of all OTUs
(Figure S7, left).

3.4.3. Analysis of Genera in Zeller Dataset
The Zeller dataset consists of gut microbiomes from 199 subjects
that are healthy (n = 66), suffer from adenomas (n = 42) or from
colorectal cancer (n = 91). Differential abundances of genera
across medical conditions was tested with z-score smoothing,
using several tree (no tree or standard BH, taxonomy, correlation
tree, randomized correlation tree and randomized taxonomy)
and several FDR threshold levels.

Figure 7 (left panel) shows the number of genera detected by
each tree at each threshold. While the correlation tree detects
the most taxa and BH the least at almost all threshold values,
the differences between all trees are very small (one or two taxa
only). In particular, at α = 0.05, all methods detected either 14 or
16 genera.

In this example, the algorithm estimated ρ > 40 for the
random trees and k < 10−7 for the correlation tree, effectively
resulting in no smoothing of the z-scores. The corresponding
values are ρ = 0.26 and k = 0.37 for the taxonomy. The z-scores
were thus smoothed to a higher extent but this had almost no
impact on the number of detected genera.

3.4.4. Analysis of MSPs in Zeller Dataset
Repeating the same analysis at the MSP, rather than genus, level
gave similar results. Among the 878 MSP and using α = 0.05,
234 were detected without correction, 90 with the correlation
tree, 85 with standard BH and 77 with a random tree. Neither
the taxonomy nor the phylogeny were available for the MSP and
they were therefore not compared to the other methods.

In that example k = 1.3 × 10−7 and the tree has almost no
impact on the z-scores and the corrected p-values (Figure S8,
bottom row). The 5 additional taxa detected with the correlation
tree are indeed not clustered with other detect taxa and have
BH-corrected p-values between 0.0505 and 0.0540 (Figure S8,
left row). The main differences between the two procedures does
not lie in the use of a hierarchical structure rather than in the
way corrected p-values are computed: using permutations for

FIGURE 7 | Number of detected genera (Left) or MSPs (Right) according to the p-value threshold. Left: With α = 0.05, 14 genera are detected with taxonomy,

random correlation tree and BH while 16 species are detected with correlation tree and random taxonomy. Right: With α = 0.05, 85 MSPs are detected by BH and

90 by correlation tree.
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the correlation and analytic formula for BH. It coincides with
previous findings that permutation-based FDR control improves
detection of differentially abundant taxa (Jiang et al., 2017).

4. CONCLUSION AND PERSPECTIVES

In this work, we investigated the relevance of incorporating
a priori information in the form of a phylogenetic tree
in microbiome differential abundance studies. Doing so was
reported to increase the detection rate in recent work (Sankaran
and Holmes, 2014; Xiao et al., 2017).

The rationale rests upon the assumption that evolutionary
similarity reflects phenotypic similarity. Taxa from the same
clade should therefore be more likely to be simultaneously
associated to a given outcome than distantly related taxa.
Although this assumption sounds natural and supported by
evidence for high level taxa such as phylum (Philippot
et al., 2010), there are also many arguments against it for
low level taxa such as species and strains. Previous work
(Harris et al., 2015) even showed some degree of equivalence
between species in the gut, i.e., species within the same
ecological guild could replace each other during the assembly
process.

We considered here whether the phylogeny and taxonomy
were good a priori trees to capture the structure of the
abundance data, as captured by the correlation tree. In all the
environments we studied, we found that the taxonomy and/or
the phylogeny were significantly different from the correlation
tree. Taxa with very similar abundance profiles could be widely
spread in the phylogeny and vice-versa. The phylogeny was
on average no closer to the correlation tree than a random
tree, and thus not a good proxy of the abundance data
structure.

We further studied the impact of tree misspecification on
two recently published tree-based testing procedures, z-score
smoothing (Xiao et al., 2017) and hFDR top-down rejection
(Yekutieli, 2008).

Concerning z-score smoothing, we showed on synthetic
data that substituting the correlation tree to the phylogeny
increased the detection rate. Quite surprisingly, replacing the
phylogeny with a random tree also increased the detection
rate (Figure 5), questioning the use of the phylogeny in
the first place. The results were even more disappointing
on real datasets where all trees led to similar detection
rates and none of them significantly outperformed standard
BH (Figure 7). In the Zeller MSP dataset, the differences
between procedures were limited (Figure S7) and stemmed
mostly from the way p-values were computed: i.e., using
permutations for z-score smoothing and closed formula for
BH. Overall, using phylogenetic information to smooth z-
scores degrades the detection rate (at worst) or leaves it
unchanged (at best).

Top-down rejection (hFDR) gave more interesting results.
Replacing the phylogeny or taxonomy with the correlation
tree increased the detection rate, while preserving the global a
posteriori FDR. In general, taxa detected with the correlation

tree but not with the phylogeny belonged to clades of mostly
non-differential taxa in the phylogeny (Figure 6). Their signal
was thus averaged with noise and they discarded early-
on in the hierarchical procedure. In contrast, they were
salvaged on the correlation tree as they belonged clades of
taxa with similar abundance profiles. Unfortunately, hFDR
suffers from two limitations. First, it has a lower detection
rate than standard BH at the same global FDR level. This
is likely a side effect of the definition of the global FDR
in hFDR, i.e., FDR in the absolute worst case scenario.
Second, the current implementation of hFDR in StructSSI
is limited to F-test, which are ill-suited to highly non-gaussian
microbiome data.

Our findings are puzzling as the use of prior information
should intuitively increase the statistical power and certainly not
degrade it. In our opinion, three elements limits the hierarchical
methods. First, the lack of flexibility: the limitation of hFDR
to F-test is a problem which can be alleviated by substituting
it with more powerful tests (generalized linear model, omnibus
tests, etc.). Second, the inadequacy of the phylogeny as a
hierarchical prior. While informative priors can certainly lead to
increased statistical power, priors that impose a non-informative
structure, or worse a structure that conflicts with the genuine
data structure, can hamper the testing procedure by increasing
significance when it should decrease it and vice-versa. Replacing
the phylogeny with the correlation tree mitigates this effect
but only insofar as the correlation is not too noisy. Finally,
the good theoretical properties of hFDR were proved under
the assumption of independence between a p-value any of
its ancestor. It’s unlikely to be the case in practice. Yekutieli
(2008) reported that dependence within the families of tested
hypotheses and across the tree seemed to result in higher
FDR values than under independence (p. 314). Hierarchical
procedures are seducing in theory but hard to implement
in practice.

Our conclusions are two-fold. First, the phylogeny does
not capture the structure of the abundance data and should
be replaced by a better hierarchical structure such as the
correlation tree. Second, hierarchical methods in their current
state do a poor job of leveraging the hierarchical information
to increase the detection rates. Until better hierarchical methods
are available (e.g., hFDR with support for more complex tests),
we recommend sticking to the time-tested BH procedure for
differential abundance analysis.
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