Quantifying the impact of tree choice in metagenomics differential abundance studies with **Q**

Antoine Bichat^{1,2}, Mahendra Mariadassou³, Jonathan Plassais² and Christophe Ambroise¹

1. LaMME - Université d'Évry-Val-d'Essonne; 2. Enterome; 3. MaIAGE - INRA

Phylum

Microbiota

- Ecological community of microorganisms that resides in an environmental niche
- 10¹⁴ bacteria in the gut among 1 500 species
 Associations with:
 - $\circ\,$ metabolism (diet, obesity, drug absorption, $\ldots)$
 - diseases (IBD, allergies, diabete...)
 behavior (smokers, antibiotics, C-section...)
 - benavior (smokers, antibiotics, o
 environment (pet, water...)

Objectives

- Find which bacteria are differentially abundant between two or more groups
- Use a FDR multiple testing correction to prevent false positives (one test per bacteria)
- Incorporate hierarchical information to increase power
- Which tree?

Hierarchical False Discovery Rate

The z-scores $\mathbf{z} = \Phi^{-1}(\mathbf{p})$ are smoothed using the following hierarchical model:

 $\mathbf{z}|\mu \sim \mathcal{N}_n\left(\mu,\sigma^2 \mathbf{I}_m
ight) \qquad \mu \sim \mathcal{N}_m\left(\gamma \mathbf{1}, au^2 \mathbf{C}_
ho
ight)$

where $\mathbf{C}_{\rho} = (\exp(-2\rho \mathbf{D}_{i,j}))$ with \mathbf{D} the patristic distance matrix between taxa from the tree. By applying Bayes's formula:

$$\mathbf{z} \sim \mathcal{N}_m \left(\gamma \mathbf{1}, au^2 \mathbf{C}_{
ho} + \sigma^2 \mathbf{I}_m
ight) \ \mu^* = \left(\mathbf{I}_m + rac{\sigma_0^2}{ au_0^2} \mathbf{C}_{
ho_0}^{-1}
ight)^{-1} \left(rac{\sigma_0^2}{ au_0^2} \mathbf{C}_{
ho_0}^{-1} \gamma_0 \mathbf{1} + \mathbf{z}
ight)$$

Finally, a permutation-based FDR control is applied on μ^*

Class Order Family Genus

Actinobacteria	a Coriobacteriia	Coriobacteriales	Atopobiaceae	Atopobium	84	0	12	54	0
Actinobacteria	a Coriobacteriia	Eggerthellales	Eggerthellaceae	Eggerthella	2	0	0	7	0
Bacteroidetes	Bacteroidia	Bacteroidales	Prevotellaceae	Prevotella	525	7	134	753	0
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	88	1770	1490	119	2136
Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	0	0	138	4	0
Firmicutes	Negativicutes	Veillonellales	Veillonellaceae	Dialister	152	4	2	192	0
Firmicutes	Negativicutes	Veillonellales	Veillonellaceae	Megasphaera	402	0	4	102	0
Fusobacteria	Fusobacteriia	Fusobacteriales	Leptotrichiaceae	Sneathia	302	0	35	272	0

Data: taxonomy and abundance

S001 S002 S003

S004 S005

Take-home message

- The tree choice has little impact on detection power
- Benjamini-Hochberg procedure is still the most powerful method and the only one which respects the FDR control
- The ease of creating R packages greatly increases the reproducibility of analysis
- tidyverse and especially list-columns allow to write elegant and efficient R code when manipulating non-standard structures (trees, statistical model outputs...)

References

Xiao, Jian, Hongyuan Cao, and Jun Chen. False discovery rate control incorporating phylogenetic tree increases detection power in microbiome-wide multiple testing. Bioinformatics 33.18 (2017): 2873-2881.

Bokulich, Nicholas A., et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science translational medicine 8.343 (2016): 343ra82-343ra82.

Constellen, Jorrit L., et al. Gut microbial diversity is reduced in smokers with Crohn's disease. Inflammatory bowel diseases 22.9 (2016): 2070-2077.

Contact Information


```
    abichat@enterome.com
    abichat.github.io
    antoinebichat
    @_abichat
    @abichat
```


Method ···· BH --- Correlation ·-· Taxonomy -- Random Correlation ·-· Random Taxonomy