
Feature normalization step using total sum scaling
Source:R/rownormalize_tss.R
step_rownormalize_tss.Rd
Normalize a set of variables by converting them to proportion, making them sum to 1. Also known as simplex projection.
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
One or more selector functions to choose variables for this step. See
recipes::selections()
for more details.- role
Not used by this step since no new variables are created.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- res
This parameter is only produced after the recipe has been trained.
- skip
A logical. Should the step be skipped when the recipe is baked by
recipes::bake()
? While all operations are baked whenrecipes::prep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- id
A character string that is unique to this step to identify it.
- x
A
step_rownormalize_tss
object.
Value
An updated version of recipe with the new step added to the sequence of any existing operations.
Examples
rec <-
recipe(Species ~ ., data = iris) %>%
step_rownormalize_tss(all_numeric_predictors()) %>%
prep()
rec
#>
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> outcome: 1
#> predictor: 4
#>
#> ── Training information
#> Training data contained 150 data points and no incomplete rows.
#>
#> ── Operations
#> • TSS normalization on: Sepal.Length Sepal.Width, ... | Trained
tidy(rec, 1)
#> # A tibble: 4 × 2
#> terms id
#> <chr> <chr>
#> 1 Sepal.Length rownormalize_tss_9QeuR
#> 2 Sepal.Width rownormalize_tss_9QeuR
#> 3 Petal.Length rownormalize_tss_9QeuR
#> 4 Petal.Width rownormalize_tss_9QeuR
bake(rec, new_data = NULL)
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 0.5 0.343 0.137 0.0196 setosa
#> 2 0.516 0.316 0.147 0.0211 setosa
#> 3 0.5 0.340 0.138 0.0213 setosa
#> 4 0.489 0.330 0.160 0.0213 setosa
#> 5 0.490 0.353 0.137 0.0196 setosa
#> 6 0.474 0.342 0.149 0.0351 setosa
#> 7 0.474 0.351 0.144 0.0309 setosa
#> 8 0.495 0.337 0.149 0.0198 setosa
#> 9 0.494 0.326 0.157 0.0225 setosa
#> 10 0.510 0.323 0.156 0.0104 setosa
#> # ℹ 140 more rows