scimo provides extra recipes steps for dealing with omics data, while also being adaptable to other data types.
Installation
You can install scimo from GitHub with:
# install.packages("remotes")
remotes::install_github("abichat/scimo")
Example
The cheese_abundance
dataset describes fungal community abundance of 74 Amplicon Sequences Variants (ASVs) sampled from the surface of three different French cheeses.
library(scimo)
data("cheese_abundance", "cheese_taxonomy")
cheese_abundance
#> # A tibble: 9 × 77
#> sample cheese rind_type asv_01 asv_02 asv_03 asv_04 asv_05 asv_06 asv_07 asv_08
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 sample… Saint… Natural 1 0 38 40 1 2 31 8
#> 2 sample… Saint… Natural 3 4 38 61 4 4 48 14
#> 3 sample… Saint… Natural 28 16 33 23 31 29 21 1
#> 4 sample… Livar… Washed 0 2 1 0 5 1 0 0
#> 5 sample… Livar… Washed 0 0 4 0 1 1 2 0
#> 6 sample… Livar… Washed 0 1 2 0 2 1 0 0
#> 7 sample… Epois… Washed 4 2 3 0 2 5 0 0
#> 8 sample… Epois… Washed 0 0 0 0 0 0 0 0
#> 9 sample… Epois… Washed 0 0 1 0 0 0 2 0
#> # ℹ 66 more variables: asv_09 <dbl>, asv_10 <dbl>, asv_11 <dbl>, asv_12 <dbl>,
#> # asv_13 <dbl>, asv_14 <dbl>, asv_15 <dbl>, asv_16 <dbl>, asv_17 <dbl>,
#> # asv_18 <dbl>, asv_19 <dbl>, asv_20 <dbl>, asv_21 <dbl>, asv_22 <dbl>,
#> # asv_23 <dbl>, asv_24 <dbl>, asv_25 <dbl>, asv_26 <dbl>, asv_27 <dbl>,
#> # asv_28 <dbl>, asv_29 <dbl>, asv_30 <dbl>, asv_31 <dbl>, asv_32 <dbl>,
#> # asv_33 <dbl>, asv_34 <dbl>, asv_35 <dbl>, asv_36 <dbl>, asv_37 <dbl>,
#> # asv_38 <dbl>, asv_39 <dbl>, asv_40 <dbl>, asv_41 <dbl>, asv_42 <dbl>, …
glimpse(cheese_taxonomy)
#> Rows: 74
#> Columns: 9
#> $ asv <chr> "asv_01", "asv_02", "asv_03", "asv_04", "asv_05", "asv_06", "asv…
#> $ lineage <chr> "k__Fungi|p__Ascomycota|c__Dothideomycetes|o__Dothideales|f__Dot…
#> $ kingdom <chr> "Fungi", "Fungi", "Fungi", "Fungi", "Fungi", "Fungi", "Fungi", "…
#> $ phylum <chr> "Ascomycota", "Ascomycota", "Ascomycota", "Ascomycota", "Ascomyc…
#> $ class <chr> "Dothideomycetes", "Eurotiomycetes", "Eurotiomycetes", "Eurotiom…
#> $ order <chr> "Dothideales", "Eurotiales", "Eurotiales", "Eurotiales", "Euroti…
#> $ family <chr> "Dothioraceae", "Aspergillaceae", "Aspergillaceae", "Aspergillac…
#> $ genus <chr> "Aureobasidium", "Aspergillus", "Penicillium", "Penicillium", "P…
#> $ species <chr> "Aureobasidium Group pullulans", "Aspergillus fumigatus", "Penic…
list_family <- split(cheese_taxonomy$asv, cheese_taxonomy$family)
head(list_family, 2)
#> $Aspergillaceae
#> [1] "asv_02" "asv_03" "asv_04" "asv_05" "asv_06" "asv_07" "asv_08" "asv_09"
#>
#> $Debaryomycetaceae
#> [1] "asv_10" "asv_11" "asv_12" "asv_13" "asv_14" "asv_15" "asv_16" "asv_17"
#> [9] "asv_18" "asv_19" "asv_20" "asv_21" "asv_22"
The following recipe will
- aggregate the ASV variables at the family level, as defined by
list_family
; - transform counts into proportions;
- discard variables those p-values are above 0.05 with a Kruskal-Wallis test against
cheese
.
rec <-
recipe(cheese ~ ., data = cheese_abundance) %>%
step_aggregate_list(
all_numeric_predictors(),
list_agg = list_family,
fun_agg = sum
) %>%
step_rownormalize_tss(all_numeric_predictors()) %>%
step_select_kruskal(
all_numeric_predictors(),
outcome = "cheese",
cutoff = 0.05
) %>%
prep()
rec
#>
#> ── Recipe ────────────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> outcome: 1
#> predictor: 76
#>
#> ── Training information
#> Training data contained 9 data points and no incomplete rows.
#>
#> ── Operations
#> • Aggregation of: asv_01, asv_02, asv_03, asv_04, asv_05, ... | Trained
#> • TSS normalization on: Aspergillaceae Debaryomycetaceae, ... | Trained
#> • Kruskal filtering against cheese on: Aspergillaceae, ... | Trained
bake(rec, new_data = NULL)
#> # A tibble: 9 × 8
#> sample rind_type cheese Debaryomycetaceae Dipodascaceae Saccharomycetaceae
#> <fct> <fct> <fct> <dbl> <dbl> <dbl>
#> 1 sample1-1 Natural Saint-Ne… 0.719 0.0684 0.113
#> 2 sample1-2 Natural Saint-Ne… 0.715 0.0725 0.119
#> 3 sample1-3 Natural Saint-Ne… 0.547 0.277 0.0938
#> 4 sample2-1 Washed Livarot 0.153 0.845 0.000854
#> 5 sample2-2 Washed Livarot 0.150 0.848 0.00106
#> 6 sample2-3 Washed Livarot 0.160 0.837 0.00108
#> 7 sample3-1 Washed Epoisses 0.0513 0.944 0.00327
#> 8 sample3-2 Washed Epoisses 0.0558 0.941 0.00321
#> 9 sample3-3 Washed Epoisses 0.0547 0.942 0.00329
#> # ℹ 2 more variables: `Saccharomycetales fam Incertae sedis` <dbl>,
#> # Trichosporonaceae <dbl>
To see which variables are kept and the associated p-values, you can use the tidy
method on the third step:
tidy(rec, 3)
#> # A tibble: 13 × 4
#> terms pv kept id
#> <chr> <dbl> <lgl> <chr>
#> 1 Aspergillaceae 0.0608 FALSE select_kruskal_WKayj
#> 2 Debaryomycetaceae 0.0273 TRUE select_kruskal_WKayj
#> 3 Dipodascaceae 0.0273 TRUE select_kruskal_WKayj
#> 4 Dothioraceae 0.101 FALSE select_kruskal_WKayj
#> 5 Lichtheimiaceae 0.276 FALSE select_kruskal_WKayj
#> 6 Metschnikowiaceae 0.0509 FALSE select_kruskal_WKayj
#> 7 Mucoraceae 0.0608 FALSE select_kruskal_WKayj
#> 8 Phaffomycetaceae 0.0794 FALSE select_kruskal_WKayj
#> 9 Saccharomycetaceae 0.0273 TRUE select_kruskal_WKayj
#> 10 Saccharomycetales fam Incertae sedis 0.0221 TRUE select_kruskal_WKayj
#> 11 Trichomonascaceae 0.0625 FALSE select_kruskal_WKayj
#> 12 Trichosporonaceae 0.0273 TRUE select_kruskal_WKayj
#> 13 Wickerhamomyceteae 0.177 FALSE select_kruskal_WKayj
Notes
Steps for variable selection
Like colino, scimo proposes 3 arguments for variable selection steps based on a statistic: n_kept
, prop_kept
and cutoff
.
n_kept
andprop_kept
deal with how many variables will be kept in the preprocessed dataset, based on an exact count of variables or a proportion relative to the original dataset. They are mutually exclusive.cutoff
removes variables whose statistic is below (or above, depending on the step) it. It could be used alone or in addition to the two others.